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ABSTRACT

Widely used nucleic acid assays are poorly suited
for field deployment where access to laboratory
instrumentation is limited or unavailable. The need
for field deployable nucleic acid detection demands
inexpensive, facile systems without sacrificing
information capacity or sensitivity. Here we
describe a novel microarray platform capable of
rapid, sensitive nucleic acid detection without
specialized instrumentation. The approach is
based on a miniaturized lateral flow device that
makes use of hybridization-mediated target
capture. The miniaturization of lateral flow nucleic
acid detection provides multiple advantages over
traditional lateral flow devices. Ten-microliter
sample volumes reduce reagent consumption and
yield analyte detection times, excluding sample
preparation and amplification, of _120 s while
providing sub-femtomole sensitivity. Moreover, the
use of microarray technology increases the poten-
tial information capacity of lateral flow. Coupled
with a hybridization-based detection scheme, the
lateral flow microarray (LFM) enables sequence-
specific detection, opening the door to highly
multiplexed implementations for broad-range
assays well suited for point-of-care and other field
applications. The LFM system is demonstrated
using an isothermal amplification strategy for
detection of Bacillus anthracis, the etiologic agent
of anthrax. RNA from as few as two B. anthracis
cells was detected without thermocycling hardware
or fluorescence detection systems.

INTRODUCTION

The challenges presented by biological weapons, global
health-care issues and emerging diseases of natural origin
lend urgency to the development of rapid, field-deployable

pathogen detection and diagnostic tools (1,2). Ideally,
to be of general field utility, a diagnostic device must be
capable of sensitive and specific pathogen detection
while retaining simplicity of use and independence from
complex laboratory instrumentation (3). Additional chal-
lenges are presented by the need to screen samples for
multiple pathogenic or toxic agents, a characteristic
highly desirable in cases where commonalities in early
symptom presentation confound differential diagnoses.
While nucleic acid-based assays for pathogen detection
and identification offer sensitivity, specificity and resolu-
tion, they are relatively elaborate and often costly,
limiting their utility for point-of-care diagnostics and
deployment under field conditions where a supporting
laboratory infrastructure is limited or absent. Reliance
upon polymerase chain reaction (PCR) and fluorescent
detection of amplified nucleic acids has contributed
significantly to the complexity and cost of nucleic acid
diagnostics (2,4–6). Retaining assay sensitivity while
circumventing requirements for thermocyclers and
fluorescence detection hardware remains a significant
challenge.
The recent advent of DNA microarray technology has

promised to increase the information capacity of nucleic
acid diagnostics and enable the highly multiplexed
detection of genetic signatures (7). The potential of
DNA microarrays to detect, in parallel, large panels
of distinct nucleic acid sequences has proven to be a
powerful technique for many laboratory applications (8).
Nonetheless, the reliance of this technology on costly
instrumentation for high-resolution fluorescence signal
transduction severely limits the utility of microarrays for
field applications where a laboratory infrastructure is
limited or unavailable. Additionally, the long hybridiza-
tion incubations required for microarray assays increase
sample-to-answer times beyond what would be acceptable
for a rapid screening assay. Though microarray hybridi-
zation times as short as 300 and 500 s have been reported
(9,10), such methods employ designs that remain reliant
upon fluorescent detection and supporting instrumenta-
tion and do not address the need for low-cost, easily
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manufactured devices that can be used in the absence of
laboratory infrastructures.
In contrast to DNA-based assays, immunoassays have

found widespread acceptance in low-cost, easily used
formats, perhaps the most notable of which is the
chromatographic lateral flow immunoassay (11). Lateral
flow assays, also known as hand-held assays or dipstick
assays, are used for a broad range of applications where
rapid antigen detection is required in an easily used,
low-cost format. Expanding the domain of lateral flow
chromatography to nucleic acid detection, a number
of recent reports have described lateral flow detection of
PCR products using a variety of capture and detection
schemes (12–15). Unfortunately, the utility of lateral flow
detection in the context of a PCR-based assay is severely
limited by the fact that reliance on thermocycling
hardware largely negates the potential benefit of the
otherwise highly simplified lateral flow platform.
Additionally, a PCR-based approach to lateral flow
detection necessitates each PCR reaction be subjected
to post-amplification manipulations required to generate
single-stranded products for hybridization-based
detection.
Recent work has sought to alleviate reliance on PCR

through employing isothermal nucleic acid amplification
schemes or direct detection of unamplified genetic
material. Enabled by the use of up-converting phosphor
reporters, unamplified Streptococcus pneumoniae DNA
sequence has been detected using a lateral flow assay
format (16). Up-converting phosphor technology, while
sensitive, remains dependent upon the hardware required
to detect phosphor emission (17). The use of simple
colorimetric detection schemes that circumvent the
requirements for complex instrumentation require an
upstream amplification strategy to attain suitable sensi-
tivity. Isothermal nucleic acid amplification coupled
with lateral flow detection has been reported for assays
making use of cycling probe technology [CPT, (18)],
recombinase polymerase amplification [RPA, (19)]
and nucleic acid sequence-based amplification [NASBA,
(20–27)]. While the work by Fong et al. (23) and
Piepenburg et al. (19) made use of a lateral flow
immuno-assay for DNA detection, the RNA targets
amplified by NASBA in the work from Baeumner’s
group (24–27) were detected using a lateral flow system
enabled by the use of liposome encapsulated dye and
a sandwich hybridization assay similar to that reported
by Rule et al. (13). While shown to display nanomolar
sensitivity, the reported dye encapsulating liposome-
based methods require additional washing steps and
the liposomes are relatively labile, must be custom
synthesized, and stored under stabilizing hydrated
conditions (28).
To develop more capable nucleic acid detection

methods that offer many of the advantages of microarray
technology yet retain the simplicity of lateral flow-based
platforms, we have developed a microarray-based lateral
flow technology. Using an assay based on the nonsense
mutation in the plcR gene of Bacillus anthracis, that is
absent in the near phylogenetic neighbors B. thuringiensis
and B. cereus (29,30), we illustrate the utility of the lateral

flow microarray (LFM) approach for sensitive detection
and discrimination of closely related microbial signatures
when present as minority sequences in complex nucleic
acid mixtures. The results demonstrate that LFMs,
making use of stable detection reagents suitable for dry
storage, can be used to detect as little as 250 amol analyte
within 2min of sample addition. The miniaturization of
lateral flow detection decreases reagent consumption and
sample-to-answer times while increasing the potential
information capacity of the platform to enable the
development of highly multiplexed nucleic acid detection
assays.

MATERIALS AND METHODS

RNA isolation

Total RNA was isolated from B. anthracis strain Sterne
7702 and B. thuringiensis strain HD 621 (31) using
a previously reported protocol (32). Purified RNA was
quantified by measuring OD260 and evaluated by gel
electrophoresis. 3� 108 cells were used for RNA isolation
typically yielding 50–75mg of total RNA.

Amplification primer design

NASBA (22) primers, plc-P1 and plc-P2, were designed to
amplify a fragment of the plcR locus from B. anthracis.
Primer sequences used for NASBA reactions are provided
in Table 1, the T7 promoter sequence is italicized in
plc-P1. Plc-P1 hybridizes to the plcR transcript such that
the 30-end of the primer forms a base pair with the
previously reported polymorphism strictly associated with
B. anthracis (29,30). The NASBA P2 primer, plc-P2,
is located such that the amplified RNA resulting from
NASBA is 179 bases in length (Figure 1A). Previously
reported plcR-based B. anthracis real-time PCR assays
(29,30) have made use of an alternate upstream primer
that generates a 83 bp product but may be poorly suited
for NASBA given the optimal NASBA product size
of 120–250 bases (33).

Nucleic acid sequence-based amplification (NASBA)

NASBA reactions were prepared according to the
manufacturer’s instructions using the NucliSens Basic kit
(Biomerieux) and primers plc-P1 and plc-P2 at 0.4mM
each. Amounts of total cellular bacterial RNA were
varied, as indicated, between 0 and 2 ng. Bacillus anthracis
Sterne 7702 was used as a test strain and B. thuringiensis
strain HD 621 was employed as a negative control.
One microgram of human total cellular RNA isolated
from HeLa S3 cells (Stratagene) was included in all
NASBA reactions to provide a complex RNA background
consistent with the composition of human diagnostic
samples. Following a 60-min incubation at 418C, NASBA
reaction products were detected by using a LFM.

LFM fabrication

LFMs were printed using a NanoPlotter 2.0 (GeSim,
mbH, Dresden, Germany) non-contact picoliter deposi-
tion system equipped with NanoTips (GeSim).
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Unless otherwise indicated, LFMs were patterned with
400 mM solutions of oligonucleotide in H2O containing
a 1:50 dilution of Ponceau S (P7767, Sigma) as a tracking
dye. A lateral flow compatible nitrocellulose membrane
(HiFlow 135, Millipore) was used as the LFM substrate.
Following oligonucleotide deposition, nitrocellulose
membranes were air dried and exposed to 5000 mJ UV in
a StrataLinker (Stratagene). The resulting membrane
sheets were cut into 3-mm wide, 30-mm long strips,
which were either used directly with buffer-suspended
dyed microspheres or assembled with conjugate release
pads into a custom plastic housing. Housings were
fabricated from polycarbonate sheet cut using a CO2

laser (VersaLaser VL-300, Universal Laser Systems, Inc.,
Scottsdale, AZ, USA). A gasket of 500-mm thickness was
used to generate an internal chamber of sufficient size to
accommodate the LFM substrate and the conjugate
release pad. The small sample volumes used obviated
the need for sample and downstream absorbent pads,
the function of which was supplied by the conjugate
release pad and unpatterned regions of the LFM
substrate, respectively. Conjugate release pads were
made by impregnating glass fiber conjugate pad
(GFCP203000, Millipore) with dyed microspheres cova-
lently conjugated to R-57-76-3TN in 1% SDS. Conjugate
release pads measuring 3.5mm� 4.5mm were doped

with �8� 109 oligonucleotide conjugated dyed micro-
spheres. Microsphere saturated release pads were allowed
to air dry under ambient conditions prior to assembly
with LFM membranes.

Colorimetric hybridization sandwich assay reagents

Table 1 provides capture and detection oligonucleotide
sequences, their binding sites within the plcR amplicon are
depicted in Figure 1B. Amine modification and a T18

spacer sequence were included on the 30-end of detection
oligonucleotide R-57-76-3TN to allow covalent cross-
linking to dyed microspheres and to facilitate hybridiza-
tion in lateral flow sandwich assays, respectively.
SPHEROTM carboxyl-polystyrene 0.35-mm blue micro-

spheres (Spherotech) were covalently conjugated to amino
modified oligonucleotide R-57-76-3TN using the coupl-
ing agent 1-etyl-3-(3-dimethylaminopropyl-diimide HCl)
(EDAC, Pierce) under conditions adapted from
Spiro et al. (34). Briefly, 1.1� 1012 microspheres were
suspended in 100mM 2-(N-morpholino)ethanesulfonic
acid pH 4.5 (MES, Sigma). Indicated amounts of
oligonucleotide were introduced to MES suspended
microspheres, vortexed and incubated in the presence of
0.5mg/ml EDAC. Reactions were protected from light in
aluminum foil wrapped tubes and incubated at room

Table 1.

Function Name Sequence

Bead Conjugation/Detection Probe R-57-76-3TN 50-AGGTGAGACATAATCATGCA TTTTTTTTTTTTTTTTTT-NH2-30

Detection Probe/Negative Control R-57-76-3N 50-AGGTGAGACATAATCATGCA-NH2-30

LFM Immobilized Capture Probe R-77-96 50-TAATAAAGAGTTTGATGTGA-30

LFM Immobilized Capture Probe R-36-55 50-AAGCATTATACTTGGACAAT-30

LFM Immobilized Capture Probe R-24-43 50-TGGACAATCAATACGAATAA-30

Synthetic target/Positive Hyb Control dnaR89 50-CAAAGCGCTTATTCGTATTGATTGTCCAAGTATAATGCTTTTGC
ATGATTATGTCTCACCTTCACATCAAACTCTTTATTATCATGTAA-30

NASBA/In vitro transcription product plcRivt 50-GGGAGAUUUGCAUGACAAAGCGCUUAUUCGUAUUGAUUGU
CCAAGUAUAAUGCUUUUGCAUGAUUAUGUCUCACCUUCACAU
CAAACUCUUUAUUAUCAUGUAAUACUUCUAAUUGCUUUAAUA
UAUUUUCAUAUAACUCAAUACUCUUCUUAAAAUGGCCAUUUU
CAGCGUAAAUGUU-30

Negative Hyb Control FT-S18 50-GCGGTCCCAAAAGGGTCAGTCGTAGCACACCACTTTCA-30

Negative Hyb Control F-24-43 50-TTATTCGTATTGATTGTCCA-30

NASBA-P1/Allele Discrimination plc-P1 50-TTCTAATACGACTCACTATAGGGAGATTTGCATGACAAAGCGCTTA-30

NASBA-P2 plc-P2 50-AACATTTACGCTGAAAATGGCCA-30

Figure 1. (A) NASBA primer-binding sites are shown in the relevant region of the predicted B. anthracis plcR mRNA sequence based on GenBank
accession number AY265698. The terminal 30 base of plc-P1 is complementary to the U of the ochre stop codon, indicated with an arrowhead,
diagnostic for B. anthracis. (B) The predicted nucleotide sequence plcR mRNA in the region represented by synthetic target dnaR89. The binding
sites of detection probe R-57-76-3TN, as well as capture probes R-77-96, R36-55 and R-24-43 are indicated.
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temperature for 30min followed by the introduction of
additional EDAC to bring the final EDAC concentration
to 1 mg/ml. Incubation was continued for an additional
30min after which beads were washed once with 1ml
0.02% tween-20 (Sigma) and twice with 0.5ml 0.1% SDS
(Fisher Scientific). Beads were re-suspended in 0.5ml
DNAase/RNAase free H2O. Bead suspensions were
assessed for aggregation by phase-contrast light micro-
scopy using a Zeiss IM135 inverted microscope.

LFM assays

A DNA oligonucleotide, dnaR89, composed of sequence
derived from a region of the plcR gene of B. anthracis,
as shown in Figure 1B, was used to provide a readily
available and quantifiable target for LFM assay develop-
ment and optimization. The sequence of this synthetic
target is provided in Table 1. Additionally, a full-length
synthetic target RNA was generated. This RNA, referred
to here as plcRivt, was used to confirm that reaction
conditions established with dnaR89 were also suitable for
the detection of NASBA reaction products. Synthesis of
plcRivt was accomplished by using plc-P1 and plc-P2
primers in PCR reactions containing 20 ng of B. anthracis
Stern strain 7702 genomic DNA. PCR reactions using
Platinum PCR Supermix (Invitrogen) were conducted
for 40 cycles of 948C for 30 s, 608C for 30 s and 728C for
1min following an initial 2-min incubation at 948C.
The resulting amplicon was subjected to purification
using QIAquick PCR clean-up spin-columns (QIAGEN)
and subsequently used to program an in vitro transcrip-
tion reaction using the T7 AmpliScribe kit (EpiCentre).
The in vitro transcription reaction product was subjected
to treatment with RNase free DNase I (Ambion) and
purified using a RNeasy column (QIAGEN). The result-
ing RNA was quantified by measuring the OD260. plcRivt
is predicted to be identical in sequence to the NASBA
product generated from B. anthracis total cellular RNA
using plc-P1 and plc-P2.
Detection of NASBA reaction products by LFM was

accomplished by introducing a 2-ml aliquot of a 20-ml
NASBA reaction into 8 ml of LFM running buffer. Lateral
flow running buffer was based on the widely used standard
sodium citrate buffer (SSC; 1�SSC¼ 150mM NaCl,
15mM sodium citrate, pH 7.0) supplemented with 1.4%
Triton X-100 and 0.1% SDS to reduce microsphere
aggregation and 5% formamide to increase hybridization
stringency and destabilize target secondary structure
(final buffer composition: 4� SSC, 0.1% SDS, 1.4%
Triton X-100, 5% deionized formamide). The final
volume of solution applied to LFMs was 10 ml.
Following completion of sample flow, LFM membranes
were removed from plastic housings and allowed to air dry
prior to scanning with a standard flatbed PC scanner
(CanoScan 9950F, Canon, Inc.). Scans were performed
at 2400 dpi resolution using 48-bit color. The resulting
image files were converted to grayscale, inverted and saved
as 16-bit TIFF files using Photoshop CS2 (Adobe).
Image files were analyzed using GenePix Pro 6.0
(Molecular Devices) to quantify microarray spot

intensities for NASBA product detection and for
dnaR89 dilution series experiments.

For time course studies, LFM assays were conducted
with sample buffer containing 0.1% w/v suspended dyed
microspheres (�4� 109 particles) in running buffer.
Lateral flow was recorded using a digital video recorder
(DCR-PC1, Sony). Video frames were collected for
quantification using iMovie (Apple Computer). Feature
intensity was quantified for time course studies and some
optimization experiments using uncalibrated optical
density in ImageJ (http://rsb.info.nih.gov/ij/). For better
reproduction contrast, LFM images used for figures were
cropped and modified by applying the Auto Contrast
function in Photoshop CS2. No other modifications
were applied.

RESULTS

LFM prototype

Oligonucleotides for hybridization sandwich assays were
designed to detect NASBA amplified B. anthracis plcR
mRNA or synthetic targets based on relevant subregions
of the plcR sequence. Oligonucleotides immobilized on the
lateral flow substrate are referred to here as capture
oligonucleotides while those conjugated to dyed micro-
spheres for signal generation are referred to here as
detection oligonucleotides. Supported large-pore nitrocel-
lulose membranes were patterned with varying concentra-
tions of capture oligonucleotides using a NanoPlotter 2.0
robotic positioning system and NanoTip piezoelectroni-
cally actuated micropipets. Oligonucleotide dnaR89 was
printed on LFM substrates as a positive hybridization
control as this oligonucleotide carries sequence comple-
mentary to bead coupled detection oligonucleotide
R-57-76-3TN. Negative hybridization control oligo-
nucleotides included the reverse complement of capture
oligonucleotide R-24-43 (F-24-43), the detection probe
sequence sans T18 spacer (R-57-76-3N) and a plcR
unrelated sequence complementary to a region of the
Francisella tularensis sdhA locus (FT-S18). By ejecting
droplets from the micropipet at a distance of 500 mm from
the nitrocellulose substrate, microarray feature sizes of
�200 mm could be generated. In contrast to contact
microarray printing methods, this approach preserves
the fragile pore structure of the membrane required for
microsphere-based detection. Patterned nitrocellulose
sheets were cut into 3-mm wide strips and then assembled
with conjugate release pads in a custom designed plastic
housing. An example of the resulting device is shown in
Figure 2A. Hybridization-mediated capture of analyte at
the cognate capture element of the microarray and non-
overlapping hybridization to dyed microsphere conju-
gated detection oligonucleotide generates a colorimetric
signal arising from an increased local concentration of
dyed microsphere particles. In the absence of hybridiza-
tion, microspheres are sufficiently dispersed that addi-
tional washing steps are not required to reduce
background signal levels. A schematic representation of
the hybridization sandwich assay scheme is depicted in
Figure 2B.
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Lateral flow hybridization sandwich assay optimization

LFMs were fabricated using varying concentrations of
capture oligonucleotide to determine optimum printing
concentrations. Following lateral flow of 25 fmol dnaR89
in 4� SSC, 5% formamide, 1.4% Triton X-100, 0.1%
SDS containing 0.1% R-57-76-3TN coupled microspheres
LFMs were scanned on a flatbed scanner and the resulting
images quantified. For all capture sequences examined,
400-mM oligonucleotide-printing concentrations provided
the most favorable signal intensity (Figure 3A). Standard
hybridization conditions employed for these and other
characterization studies were determined through an
iterative set of optimization experiments that examined
the effects of ionic strength, formamide concentration and
detection oligonucleotide to bead cross-linking ratios.

Given the profound impact ionic strength has on the
stringency of DNA hybridization, microsphere dispersion
and lateral flow characteristics, SSC concentration was
varied from 1� to 9� and assay performance evaluated
by densitometry of LFMs following hybridization sand-
wich assays conducted using 25 fmol of the synthetic
target dnaR89 or �200 fmol of plcRivt (35,36). Figure 3B
summarizes the results of SSC concentration optimization
experiments. Near optimal signal intensity was obtained
for both dnaR89 and plcRivt at SSC concentrations
between 2� and 7�. For use in standard LFM running
buffer 4� SSC was selected as it provided sensitive

hybridization-based detection of plcR derived sequences,
good capillary lateral flow characteristics, and favorable
microsphere dispersion and release-pad liberation.
Formamide is known to reduce the melting temperature

of DNA and RNA duplexes and may facilitate capture
and detection probe accessibility to binding sites within
the target through a destabilization of analyte secondary
structure (37). To determine the optimum concentration
of formamide in LFM running buffer, a series of LFM
experiments were conducted at varying formamide
concentrations using both dnaR89 and plcRivt. 10 ml of
4� SSC, 1.4% Triton X-100 and 0.1% SDS containing
25 fmol dnaR89 or �200 fmol plcRivt and varying
concentrations of formamide, as indicated in Figure 3C,
were subjected to LFM analysis and the resulting
hybridization signals quantified by densitometry. These
experiments revealed a slight but reproducible increase
in signal intensity at 5% formamide. All subsequent
studies presented here were performed using 4� SSC,
1.4% Triton X-100, 0.1% SDS and 5% formamide.
Given that higher stock concentrations of synthetic

oligonucleotide dnaR89 could be obtained, which allowed
high confidence quantification of this synthetic target
relative to what could be achieved with comparatively
dilute solutions of the in vitro transcription product
plcRivt, subsequent LFM characterization studies made
use of dnaR89. The similarity of buffer optima displayed
by dnaR89 and by plcRivt synthetic targets supported the
assertion that dnaR89 could be used as an accurate proxy
for the performance of LFM assays for NASBA product
detection. Others have reported similar findings conclud-
ing that appropriately designed DNA oligonucleotides can
be used as synthetic targets for the development of assays
ultimately used for NASBA product detection (38).
Therefore, subsequent LFM assay optimization and
characterization was conducted using dnaR89.
To determine the optimum ratios for cross-linking

detection oligonucleotides to dyed polystyrene micro-
spheres, we examined populations of beads coupled to
oligonucleotide at varying ratios. The 30-amine modified
detection oligonucleotide R-57-76-3TN was covalently
linked to polystyrene dyed microspheres using EDAC.
The resulting bead/oligonucleotide complexes were eval-
uated for their ability to mediate detection of dnaR89 in a
hybridization sandwich assay. Coupling reactions using
a 2.2� 104:1 oligonucleotide to bead ratio were found to
provide optimum signal as determined by densitometry
(Figure 3D).

Characterization of LFM-based nucleic acid detection
sensitivity

The detection oligonucleotide R-57-76-3TN carried a
30-spacer region consisting of 18 T residues to increase
the accessibility of bead bound oligonucleotides for
hybridization. R-57-76-3N, which carried the same
analyte complementary sequence as R-57-76-3TN but
without the T18 spacer, was found to exhibit significantly
reduced hybridization to dnaR89 consistent with prior
reports that a poly(dT) spacer sequence increases hybri-
dization efficiency to solid-phase coupled oligonucleotides

Figure 2. (A) A compact plastic housing was designed to a carry
conjugate release pad and a LFM membrane. A small port is used to
introduce the 10-ml sample volume and a rectangular window allows
direct visualization of the microarray capture features. The device is
39� 5mm. (B) A schematic representation of the hybridization
sandwich assay used for LFM-based nucleic acid detection. Carboxyl-
polystyrene dyed microspheres are linked to amine-modified detection
oligonucleotide R-57-76-3TN. The microsphere/analyte complex forms
by hybridization as sample solution liberates dried microspheres from
the conjugate release pad. This complex is captured from solution by
hybridization to immobilized capture probes as capillary flow trans-
ports the sample/bead solution through the large-pore nitrocellulose
matrix. The resulting increase in local microsphere concentration,
at capture features complementary to the target analyte, rapidly
produces a colorimetric signal visible to the naked eye and easily
detected at low concentrations using widely available flatbed scanners.
The hybridization based nature of the assay render it well suited for
multiplexed detection.
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(data not shown) (39,40). T18 spacers were not incorpo-
rated into LFM immobilized capture oligonucleotides
as they were found to be dispensable for hybridization.
To determine the relative performance of hybridization

sandwich assays making use of capture oligonucleotides
with complementarity to different locations of the target
sequence, three capture oligonucleotides were synthesized

and compared using sandwich assays employing detection
oligonucleotide R-57-76-3TN coupled dyed microspheres.
R-77-96 was designed to participate in base stacking with
R-57-76-3TN when hybridized to the target. Base stacking
has been reported to stabilize hybridization and allow
efficient capture of dilute nucleic acids by hybridization
(41–45). The binding sites for the three capture

Figure 3. (A) LFM substrates patterned with different concentrations of capture oligonucleotides R-77-96, R-36-55, and R-24-43 were used to detect
dnaR89 with R-57-76-3TN microspheres. Signals generated at microarray capture features printed at 200, 400 and 800 mM were quantified
following lateral flow of samples containing 5, 10 and 20 fmol dnaR89. Signals were normalized for each capture probe and target concentration.
Average signal intensities were calculated and presented in this bar graph. 400 mM printing concentrations consistently provided the strongest signal
independent of capture sequence or dnaR89 concentration. Error bars are the 95% confidence interval (two tailed, n¼ 12). (B) Scatter plot
of normalized signal intensity versus SSC concentration. LFM running buffer was optimized for SSC concentration using R-57-76-3TN to detect
dnaR89 (circles) or plcRivt (squares). (C) Line plot of normalized signal intensity versus formamide concentration. Formamide concentrations
between 0 and 20% in LFM running buffer based on 4� SSC were evaluated for dnaR89 (circles) and plcRivt (squares). Five percent formamide
provided near optimal detection of both dnaR89 and plcRivt. (D) Line plot of normalized signal intensity versus the R-57-76-3TN to microsphere
ratio. Oligonucleotides/bead of 2.2� 104 in coupling reactions provided the best performing conjugated microsphere populations as judged by
hybridization sandwich assay signal intensity. For parts B–D error bars are the 95% confidence interval (two tailed, n¼ 4).
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oligonucleotides examined (R-77-96, R-36-55 and
R-24-43) are illustrated in Figure 1B. Varying quantities
of synthetic target dnaR89, between 0 and 200 fmol, were
used for these studies. Figure 4 depicts LFM membranes
following detection of the indicated amounts of target
oligonucleotide dnaR89. LFMs carried dnaR89, which
hybridizes directly to the microsphere conjugated detec-
tion probe, as a positive hybridization control. Positive
control features were printed as the left most element of
each LFM row to assist in feature identification. Negative
hybridization controls, F24-43 and FT-S18, were based on
the reverse complement of R-77-96 and an unrelated
F. tularensis derived sequence, respectively. Additionally,
to confirm that no carryover contamination occurred
during printing, H2O containing Ponceau S was printed
on LFM substrates between positive control and capture
oligonucleotide deposition. No signal was detectable
in either hybridization negative controls or H2O negative
control microarray elements.

Background corrected signal intensity was determined
from LFM images using GenePix Pro 6.0 microarray data
extraction software. The results, presented in Figure 5A,
reveal R77-96 produces significantly higher hybridization
signals than R-36-55 or R-24-43 for all examined
quantities of dnaR89, suggesting a significant contribution
of base stacking effects to LFM hybridization sandwich
assay sensitivity.

To define the detection limit of the LFM assay,
a one-tailed t-test was used to determine quantities of
dnaR89 that generated signal intensities significantly
above 0 amol negative controls. Signals generated at
R-77-96 capture features with 250 amol and greater
quantities of dnaR89 were significantly40 amol dnaR89
controls (P50.05, n¼ 6). By the same criterion, 1 fmol
dnaR89 detection limits were obtained for both R-24-43
and R-36-55 (P50.05, n¼ 6). Figure 5B depicts the
performance of LFM detection over 0 to 2500 amol
dnaR89 range using the R-77-96/R-57-76-3TN capture/
detection probes. LFM detection exhibited excellent
linearity, R2

¼ 0.989, over this 10-fold range of target
molecules. While capture probe R-24-43 exhibited less
sensitivity than R-77-96, this capture probe displayed
excellent signal linearity between 2.5 and 100 fmol
dnaR89, R2

¼ 0.968 (Figure 5C). These findings demon-
strate that the LFM capacity to display multiple capture
sequences can be used to simultaneously provide sensitive
detection and extend assay linearity through the use of
capture probes with differing hybridization characteristics.

LFM detection time course studies

The small sample volumes used for LFM detection and
the reduced surface area traversed during capillary
lateral flow significantly reduces detection times for

Figure 4. Representative LFMs are shown following detection of the indicated amounts of dnaR89. The microarray physical layout is provided in
the color legend. The panel labeled ‘Ponceau S’ is an LFM prior to sample addition. Ponceau S allows visualization of successful oligonucleotide
deposition but migrates away from the capture zone during sample transport across the substrate. Contrast was adjusted using the Auto Contrast
function in Photoshop CS2 to increase reproduction contrast. Auto Contrast adjustment was not used for images subjected to quantification. The bar
is 600 mm for all LFM panels.
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the LFM relative to traditional lateral flow devices.
To quantitatively present the speed of LFM nucleic acid
hybridization-based detection, we used digital video to
follow hybridization sandwich assay-mediated detection

of synthetic target molecule dnaR89. Individual frames
were isolated from video datasets and quantified for
relative signal intensity over the course of capillary lateral
flow across the LFM substrate. The resulting signal data
was plotted versus time in seconds as shown in Figure 6.
For time measurements, t0 was defined as the time when
the sample front reached the first row of LFM features.
Signal was detectable for 1000-fmol target in 2 s following
sample transport across R-77-96 capture elements. Within
4 s 100 fmol dnaR89 was detectable while 10 fmol was
clearly detectable by 30 s as defined by the earliest time
point at which 90% of the pixels composing the R-77-96
microarray features were greater than one standard
deviation above background. Lateral flow transport of
the 10-ml sample was complete by 120 s.

Allele-specific Isothermal Amplification and LFM-based
Product Detection

Prior reports have described a single nucleotide poly-
morphism (SNP) present in B. anthracis but not close
phylogenetic near neighbors including B. cereus and
B. thuringiensis (29,30). This SNP has been used as the
basis for a sensitive and highly discriminatory real-time
PCR assay for B. anthracis (30). To determine the utility
of LFM technology for detecting minority nucleic acids in
complex samples, NASBA primers were designed to
amplify the plcR allele of B. anthracis. P1 and P2 primer
sequences, plc-P1 and plc-P2, used for NASBA amplifica-
tion are provided in Table 1 and their binding positions
illustrated in Figure 1.

Varying amounts of total cellular RNA isolated from
B. anthracis or 2 ng of B. thuringiensis HD 621 RNA as
a negative control were introduced to 1 mg of total human
cellular RNA isolated from HeLa S3 cells. The resulting

Figure 5. (A) The relative performance of three different capture
oligonucleotides (R-77-96, circle/solid line; R-36-55, square/solid line;
R-24-43, diamond/dashed line) was determined using varying amounts
of dnaR89 from 0 to 200 fmol. The capture probe R-77-96 provides
significantly more sensitive detection than the other capture sequences
evaluated using R-57-76-3TN coupled microspheres. (B) R-77-96 signal
intensity versus amol dnaR89 from 0 to 2500 amol is plotted with
a linear regression line (R2

¼ 0.989). (C) R-24-43 signal intensity versus
fmol dnaR89 from 2.5 to 100 fmol plotted with a linear regression line
(R2

¼ 0.968). For all parts error bars are the 95% confidence interval
(one tailed, n¼ 6).

Figure 6. Time course of LFM detection: 10-ml samples containing
either 1000 fmol (circle), 100 fmol (square) or 10 fmol (diamond)
dnaR89 were run on appropriately patterned LFMs. Video data were
collected and colorimetric signal intensity measured from video frames
at R-77-96 capture features. Capillary transport of the 10-ml sample was
complete by 120 s. Lines represent logarithmic curve fits to the data.
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mixtures were subjected to NASBA amplification using
plc-P1 and plc-P2 primers. Human RNA was included
in NASBA amplification reactions to approximate the
nucleic acid complexity expected in human diagnostic
specimens. An aliquot of 2 ml of NASBA reaction mixture
was removed after a 60-min incubation at 418C, mixed
with 8 ml of LFM running buffer and assayed for plcR
amplicon by LFM. Dyed microspheres cross-linked to
R-57-76-3TN were used for detection of NASBA ampli-
cons captured on LFMs carrying R-77-96. Data from
these studies are presented in Figure 7. Following 60min
of NASBA amplification, as little as 0.5 pg for total
cellular B. anthracis RNA could be detected in a
background matrix of 1 mg of human total RNA. These
studies closely approximate the conditions expected
for complex human diagnostic samples and reveal the
capacity of the LFM platform to specifically detect
NASBA reaction products generated from mixed samples
where the target sequence is a minority species. While the
number of plcR mRNA copies in a B. anthracis cell has
not been determined, an estimate of LFM assay sensitiv-
ity, in terms of B. anthracis cells, can be calculated based
on total RNA yields. Total RNA yields from vegetative
B. anthracis were in the range of �167–250 fg RNA/cell.
Using this value, an estimate of LFM sensitivity corre-
sponds to the detection of approximately to 2–3
B. anthracis cells.

DISCUSSION

Lateral flow detection of DNA or RNA amplification
reaction products provides one means of simplifying
nucleic acid detection. Indeed, a lateral flow platform
may offer many significant advantages for employing
nucleic acid assays under conditions where a fully
equipped molecular biology laboratory infrastructure is
not available or desirable. Such situations would include
resource poor settings, point-of-care, battlefield deploy-
ments and scenarios where first responders must quickly
determine the threat presented by an unknown substance.
To date, however, lateral flow devices have predominantly
been fabricated using one or a few capture lines thus
limiting the information capacity of the device to
one or a few analytes (14,27). As a step toward higher
information-content lateral flow nucleic acid detection, we
have developed nitrocellulose-patterning methods that
enable microarray feature density to be attained on
lateral flow compatible substrates. Making use of a
non-contact peizo actuated picoliter deposition system,
we have patterned lateral flow compatible nitrocellulose
membranes with features similar in size and spacing
to those typically found on spotted glass microarrays.

The sensitivity of lateral flow nucleic acid detection
methods previously reported in the literature has been
in the order of 1 fmol (25). We find that the LFM
platform provides rapid detection of as little as 250 amol
of target using a low-cost and widely available flatbed
scanner, a standard personal computer system and a
commercially available microarray data extraction suit
or free image analysis software. This detection limit

is similar to the sensitivity reported for fluorescence
and chemiluminescence microarray detection strategies
(9,46). While the LFM implementation reported here
exhibits excellent linearity (R2

¼ 0.989), the linear dynamic
range is less than that commonly associated with

Figure 7. (A) Indicated amounts of total cellular RNA from
B. anthracis Sterne strain 7702 or, as a negative control, 2 ng
B. thuringiensis strain HD 621 RNA (0 fg panel) were introduced to
1mg of total human cellular RNA isolated from HeLa S3 cells. RNA
mixtures were subjected to NASBA amplification for 60min after
which 2ml aliquots of the NASBA reactions were mixed with 8ml of
LFM running buffer and introduced to LFMs. Enlarged LFM sub-
regions are shown following cropping, grayscale conversion and Auto
Contrast adjustment in Photoshop. The legend indicates microarray
element identities: (þ) dnaR89 as a positive hybridization control,
(–) R-57-76-3N as negative hybridization control, (24–43) capture
probe R-24-43, (36–55) capture probe R-36–55, (77–96) capture probe
R-77-96. (B) Graph of quantified signals from B. anthracis and
B. thuringiensis challenged LFMs with linear regression line
(R2

¼ 0.970). 0 fg B. anthracis total cellular RNA data point contains
2 ng B. thuringiensis total cellular RNA in addition to 1 mg human
total cellular RNA. Error bars depict measurement SD (three
determinations).
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fluorescence-based detection. Alternative LFM detection
schemes and the use of capture probes of differing hybridi-
zation characteristics should enable greater dynamic range
while retaining the simplicity of the LFM approach.
Indeed, examining the signals generated by R-77-96 and
by R-24-43, the effective linear range of the LFM assay
extends over a 400-fold range of target from 250 to
100 fmol (Figure 5B and C). The information density of
the LFM offers the capacity for additional capture probes
of varying hybridization potential to be included that
should allow this dynamic range to be extended further.
The uniformity of sample flow exhibited by the LFM
suggests that larger capture probe sets can be accommo-
dated without complications arising from physical factors.
For example, concentrations of analyte 40-fold above
the linear range of R-77-96 did not adversely impact the
linearity of R-24-43 signal at LFM elements situated
directly downstream (with respect to sample flow) of
R-77-96 capture features (Figure 5B and C). Only at
artificially high microsphere capture densities, such as
those produced by the positive control hybridizations
in Figure 4, are signal gradients observed as a function
of physical location on the LFM, presumably due to
physical occlusion of membrane pores by high local
accumulations of microspheres.
LFMs offer several advantages arising directly from

the miniaturization of the system without sacrificing
detection sensitivity. While traditional lateral flow assays
make use of sample volumes in the order of hundreds of
microliters to milliliters, the miniaturization approach
we have developed reduces sample volume to 10 ml. This
reduced sample volume significantly decreases the con-
sumption of reagents required for amplification. Here we
have made use of 2 ml of a NASBA reaction diluted to 10 ml
in running buffer. By reducing standard NASBA reaction
volumes from 20 to 2 ml, a one order of magnitude reduc-
tion in enzyme consumption is realized. It should also be
noted that other amplification schemes, such as those
that make use of microfluidic systems or lab-on-a-chip
technologies, could be integrated with a miniaturized
lateral flow-based detection system to provide a rapid and
cost-effective means of detecting analytes.
A further benefit of miniaturization is the time required

to detect analyte following introduction of amplified
material to the LFM. While the procedures used here
employed NASBA amplification and traditional RNA
isolation protocols requiring �90min to complete, more
recent advances in nucleic acid preparation and amplifica-
tion have reported significant reduction in sample proces-
sing times (47). As amplification protocols become more
rapid, the speed with which amplicons can be detected,
without complex optical systems and fluorescent detec-
tion, becomes critical to realizing the potential of these
technologies. The LFM methods described here detect
nucleic acid analytes in less than 2min. Given that
250 amol is equivalent to 1.5� 108 molecules, efficient
amplification methods that offer 109-fold amplification,
widely cited amplification levels for PCR- and NASBA-
based techniques (22,48), would theoretically enable the
detection of single-copy targets by LFM following
amplification. Future systems that couple advanced

amplification technologies and compatible streamlined
nucleic acid preparation modalities with rapid LFM
detection will allow significant decreases in sample-to-
answer times without costly or complex instrumentation.
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